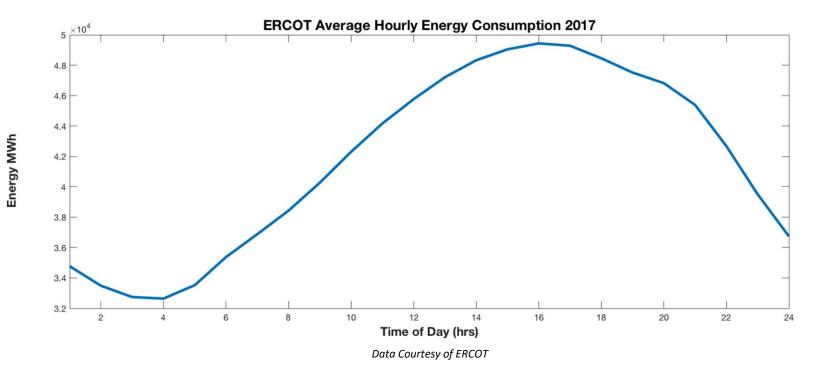
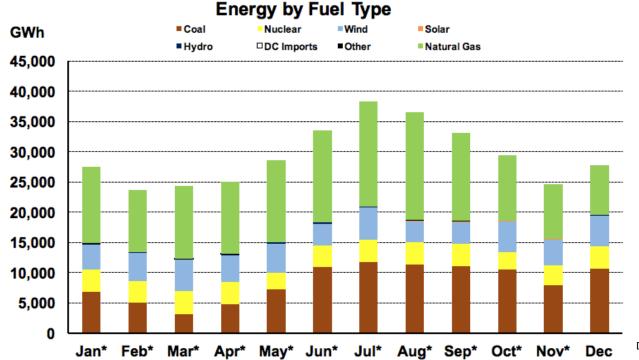
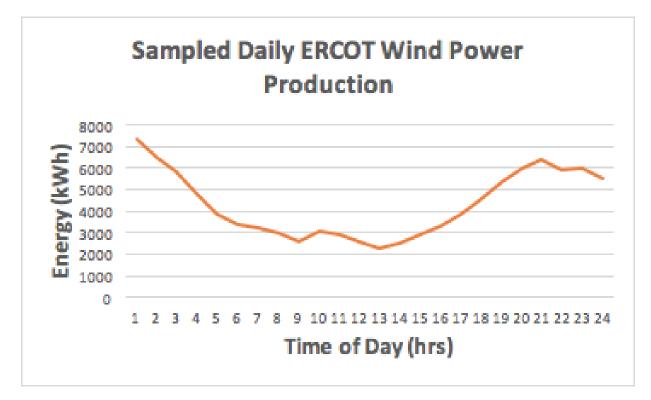

Energy Storage and Rice University By Andrew Corbato, Jason Ye, and Katherine Zoellmer


Rice's Current Electricity Portfolio


Rice's Past Energy Decisions

The Texas Power Story: Demand



The Texas Power Story: Supply

Data Courtesy of ERCOT

The Texas Power Story: Wind

Data Courtesy of ERCOT

The Missing Link: Energy Storage

Improved Selling Power

Improve selling power position due to enhanced flexibility with excess power

Operational Cost Savings

Reduce and lower operational costs

Price Capitalization

Capitalize on variable energy prices i.e. cheap wind power at night to lower costs

Increased Responsiveness

Increase responsiveness to power outages and power blips including third party disruptions

Peak Demand Shifting

Alleviate peak demand by shifting demand to off-peak times

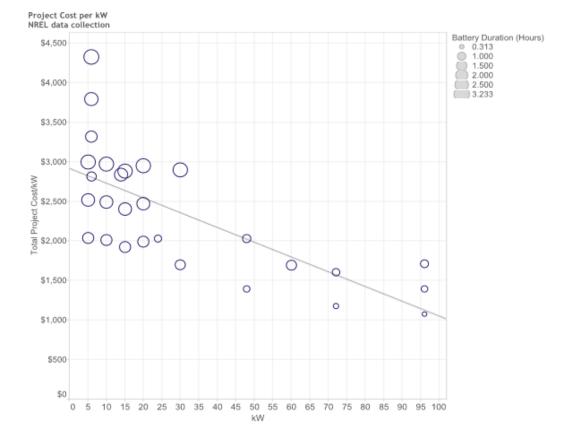
5

3

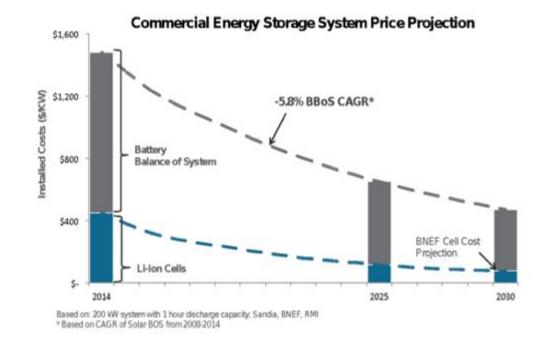
Energy Storage Options for Rice

Battery Storage: Lithium-Ion

https://financialtribune.com/articles/energy/74284/world-power-storage-capacity-to-rise-threefold-by-2030


- Vary in size to fit residential and commercial needs
- Flexible, can quickly react to changes in the grid
- Average total project cost: \$2,338/kW
 - Average Power Rating: 30 kW
 - Average Energy Rating: 37 kWh
 - Average Duration: 1.9 hours
- Cost of commercial size 500 kW/1000 kWh: \$883,427

Energy Storage (Battery) Comparables


Demo Case	<u>Cost (Upfront)</u>	<u>Capacity (kw)</u>	<u>kwH</u>	<u>Cost per KW</u>	<u>Cost per kwH</u>	<u>Notes</u>
UCSD		2500	5000			
UBC		1000	1000			
SUNY	\$3,000,000.00	500	2000	\$6,000	\$1,500	
Cal State		1000	6000			Tesla Powerpacks
Carnegie Mellon	\$1,040,000.00					
Clemson		50	160			
NREL Benchmark	\$883,427.00	500	1000	\$1,767	\$883	
NREL Average	\$55,282.00	30.7	37.1	\$1,800.72	\$1,490.08	
NREL Minimum	\$10,200.00	0.3	8			
NREL Maximum	\$164,131.00	96	90	\$1,709.70	\$1,823.68	
Tesla Megafarm	\$100,000,000.00		80000		\$1,250.00	
Mean	\$858,840.00	630.7777778	9529.51	\$2,819.32	\$1,424.30	
Median	\$523,779.00	500	1000	\$1,783.79	\$1,495.04	

Median \$1783.79 cost per kW and Median \$1495.04 cost per kWh

Lithium-Ion Battery Cost

Lithium-Ion Future Cost Projections

Source: Energy Storage Association (2015)

Lithium-Ion Battery Storage on Campuses

- UC San Diego:
 - 2.5 MW, 5 MWh
 - Incorporated into their microgrid
 - Uses no heavy metals or toxic electrolytes
- Randolph-Macon College
 - Integrated solar and battery system
 - Installing 265 solar panels for 50 kW of electricity
 - Currently testing two options for battery storage
- Clemson University
 - 50 kW, 160 kWh

Battery Storage in Texas

No tariffs or retail charges on power used to charge battery
Eligible for Texas Emission Reduction Plan Grants

•Treated as generator when selling back into grid

Thermal Energy Storage

https://cleantechnica.com/files/2016/02/Crescent-Dunes-1.1-GW-hour-storagecapability-is-almost-40-times-the-size-of-the-largest-battery-storage-project-inconstruction-or-built-to-date..jpg Sensible Heat Storage: heat is stored in a liquid or solid medium
Latent Heat Storage: where the storage medium changes phase

•Thermo-Chemical Storage: pairs chemical reactions with heat storage

Sensible Heat Storage: Chilled Water

http://www.tmc.edu/news/2017/06/powerin g-the-tmc/

- Chilled water during the daytime is used for air conditioning
- Water chilled at night stored in a TES tank when electricity prices are lowest
- Shift in demand time allows the grid to use more renewables
- Optimizes Combined Heating and Power Turbines, such as Rice's Cogeneration Turbines

Chilled Water Storage On-Campus

UCF (2010)

- Shifts 2MW of peak cooling to non-peak times
- \$320k/yr savings

USC (2013)

- 400MWh energy savings from increased system flexibility
- \$400k/yr savings

Combined Chilled Water & Seasonal Cold Storage

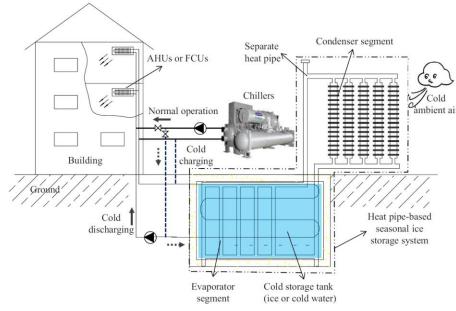
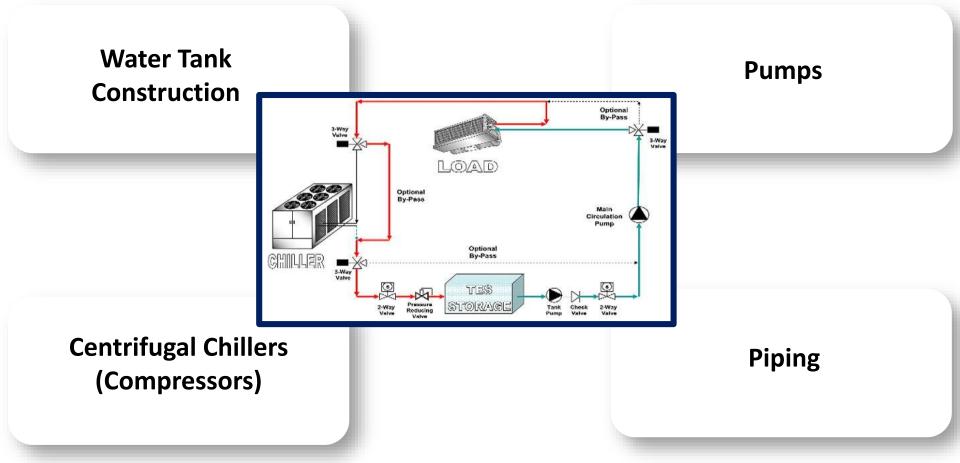
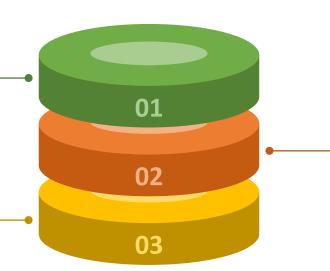



Fig. 1. Schematic of the compound cold storage system.

Yang et al (2015)

•Natural cold energy is extracted from the air in the winter, condensing into water and then ice •Melting, collected ice is then used as chilled water for air conditioning •Water is then re-used as medium for chilled water storage •Bypasses portion of cost of electricity to chill water, reducing long-term costs •Reduces storage capacity needed for utilization in small-scale buildings

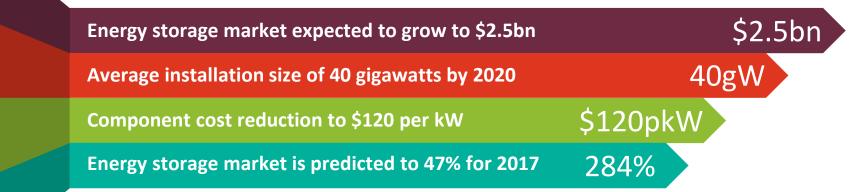
Chilled Water Cost Considerations: Components


Storage at Rice: Benefits

Both Battery and Thermal

- Optimizes electricity market interaction
- Takes advantage of cheap Texas wind prices
- Operational flexibility with cogeneration facility

Battery


- Pairs nicely with on-campus solar generation
- Incentives from ERCOT/GOV

Thermal

- Low maintenance costs
- Option to transition from cogeneration

Future Trends

Sources

http://tecothermalenergy.com/files/teco/ckfinder/files/IDEA3Q11TECOLowRes.pdf http://facilities.usc.edu/leftsidebar.asp?ItemID=462 http://energy.ucf.edu/chilled-water https://cpp.ucr.edu/masterplan_study/ucriverside_pmps_chapter6_05242016.pdf http://capsw04.usc.edu/content/cromwell-track-and-field-thermal-energy-storage-system http://energystorage.org/energy-storage/technologies/lithium-ion-li-ion-batteries

Sources Continued

https://www.cnbc.com/2017/07/07/tesla-largest-battery-system-in-the-world-elon-musk-says.html http://ucsdnews.ucsd.edu/pressrelease/environmentally_friendly_battery_energy_storage_system_to_be_installe_ d_at_u

https://www.nrel.gov/docs/fy17osti/67235.pdf

https://energy.gov/eere/solar/concentrating-solar-power

http://ideastations.org/science-matters/science-radio/dominion-virginia-power-installs-states-first-fully-

integrated-solar

http://www.renewal-energy.net/wp-content/uploads/2014/09/Thermal-Energy-Storage-Discharging-Mode.jpg